Macropolyhedral boron-containing cluster chemistry. Intermolecular coordination via hydrogen-metal interaction. The solvent-free synthesis and dimeric constitution of [Pd_2B_10H_{40}(PMe_2Ph)_4].

The [2.5.12-C_3B_13H_15]^+ anion, the first representative of the eleven-vertex *hypho* family of tricarbaboranes.

Macropolyhedral boron-containing cluster chemistry. A synthetic approach via the auto-fusion of [6,9-(SMes)_2-arachno-B_{10}H_{13}].

Macropolyhedral boron-containing cluster chemistry. Metallathiaboranes from S_2B_17H_{17}: isolation and characterisation of [(MeC_5H_4Pr)_2·Pr-RuS_2B_16H_{16}] and [(MeC_5H_4Pr)_2·Pr-RuS_2B_15H_{15}]

Structural dualism in the zwitterionic 7-RR’NH-nido-7,8,9-C_3B_9H_{10} tricarborollide series: An example of absolute tautomerism.

Macropolyhedral boron-containing cluster chemistry. A metallathiaborane from S_2B_17H_{17}: Isolation and characterisation of [(PMe_2Ph)_2PtS_2B_16H_{16}]: A *neo-arachno* ten-vertex cluster shape, and the constitution of the [arachno-B_{16}H_{15}]^+ anion.

Macropolyhedral boron-containing cluster chemistry. Synchrotron X-ray structural analysis of [(PMe_2Ph)_3Pd_3B_16H_{20}(PMe_2Ph)_3] and [(PMe_2Ph)_3Pt_3B_16H_{18}(PMe_2Ph)]: models of intermediates to more condensed metallaboranes from the [(PMe_2Ph)_2PtB_9H_{12}] thermolysis system.

An interesting metallacarborane cage closure and dismantling reaction including the facile halogenation of a cluster carbon atom: Structure of [1,2-(C_5Me_3)_2·μ-1,2-H-closo-1,2,3-Rh_2CB_8H_{12-3,1}]

Metallacarborane chemistry of the *hypho*-6,7-C_3B_9H_{13}^- anion: Reaction with nickelocene and the formation of three multimetallic nickel-boron clusters.

Metallacarborane chemistry of the *hypho*-6,7-C_3B_9H_{13}^- anion: the formation of uniquely structured metallacarboranes [5-Cp*-arachno-5,4,6-RhC_3B_9H_{13}] and [2,5-Cp*-10-Me-nido-2,5,1-Rh_2CB_8H_{12}]: Complete rhodium analogues of arachno-4,6-C_2B_7H_{13} and nido-1-CB_8H_{12}.

Synthesis of the first 11-vertex arachno-dicarbathiaborane anion, [1,6,7-C_2Sb_8H_{11}]^- . Theoretical refinement of its structure.

Macropolyhedral boron-containing cluster chemistry - Models for intermediates en route to globular and discoidal megaloborane assemblies. Structures of [{nido-B$_{10}$H$_{12}$}(nido-B$_5$H$_8$)$_2$] and [{(CH$_2$CH$_2$C$_3$H$_4$N)-arachno-B$_{10}$H$_{10}$(NC$_3$H$_4$-closo-C$_2$B$_{10}$H$_{10}$)}] as determined by synchrotron X-ray diffraction analysis. *J. Organometallic Chem.*, **2002**, 1-2, 256-261.

[µ-6,9-Cl8-(OMe)-6,9-(C$_5$Me$_5$)$_2$-arachno-6,9,5-Rh$_2$Sb$_2$H$_7$] *Acta Cryst. Sect.C.*, **2001**, 57, 52-54.

Polyhedral palladaborane chemistry: isolation and structural characterization of ten-vertex [{(PMe$_2$Ph)$_2$PdB$_{12}$(PMe$_2$Ph)}] and eleven-vertex [{(PMe$_2$Ph)$_2$Pd$_{10}$H$_{12}$}] *J. Chemical Crystallography*, **2000**, 30, 283-289.

Two potential pyridine-borane oligomer and polymer building blocks. Structural characterisation of [NC$_3$H$_4$C$_3$H$_4$N-B$_{10}$H$_{12}$-NC$_3$H$_4$C$_3$H$_4$N] and [Me$_2$S-B$_{10}$H$_{12}$-NC$_3$H$_4$N-B$_{10}$H$_{12}$-SMe$_2$] by conventional and synchrotron X-ray methods. *Inorg. Chem. Commun.*, **1999**, 2, 289-300.